Example:

Dividend

contains a decimal larger value

Divisor

contains a decimal smaller value

1. Convert to long division format

Standard Division Format

Long Division Format

Fraction Format

$$7.12 \div 3.2 = \longrightarrow 3.2 \boxed{7.12} \longleftarrow \frac{7.12}{3.2}$$

2. Multiply the divisor by a power of 10 value (10, 100, 1,000) to make it a whole number

$$3.2 \cdot 10 = 32$$

3. Multiply the dividend by the same power of 10 value

$$7.12 \cdot 10 = 71.2$$

4. Apply the new values to the long division equation

5. Put a decimal above the divsion bracket exactly where it is located in the dividend

6. Begin the long division process

I. UNDERSCORE:

Underscore the digit of interest This starts with the leftmost digit of the dividend

7

II. ASK:

Can 32 fit into 7?

III. RESPONSE:

No

IV. ZERO:

put 0 above the digit of interest

7. Continue the long division process

I. EXPAND UNDERSCORE:

Expand the digits of interest to the next digit to the right

7

II. ASK:

Can 32 fit into 71?

III. RESPONSE:

Yes

IV. HOW MANY TIMES?:

2

since $32 \cdot 2 = 64$

put 2 above the digit of interest

V. SUBTRACT:

71-64=7 (Remainder)

VI. DROP:

8. Continue the long division process

I. NEW UNDERSCORE:

The difference and newly dropped digit are the new digits of interest

<u>72</u>

II. ASK:

Can 32 fit into 72?

III. RESPONSE:

Yes

IV. HOW MANY TIMES?:

2

since $32 \cdot 2 = 64$

put 2 above the digit of interest

V. SUBTRACT:

72 - 64 = 8 (Remainder)

VI. DROP:

9. Continue the long division process

I. NEW UNDERSCORE:

The difference and newly dropped digit are the new digits of interest

<u>80</u>

II. ASK:

Can 32 fit into 80?

III. RESPONSE:

Yes

IV. HOW MANY TIMES?:

2

since $32 \cdot 2 = 64$

put 2 above the digit of interest

V. SUBTRACT:

80 - 64 = 16 (Remainder)

VI. DROP:

10. Finish the long division process

I. NEW UNDERSCORE:

The difference and newly dropped digit are the new digits of interest

<u>160</u>

II. ASK:

Can 32 fit into 160?

III. RESPONSE:

Yes

IV. HOW MANY TIMES?:

5

since $32 \cdot 5 = 160$

put 5 above the digit of interest

V. SUBTRACT:

160 - 160 = 0 (Remainder)

VI. FINISH:

The remainder is 0

There are no digits left to drop

The answer is 2.225

Example:

Dividend

contains a decimal smaller value

Divisor

contains a decimal larger value

1. Convert to long division format

Standard Division Format

Long Division Format

Fraction Format

$$0.712 \div 3.2 = \longrightarrow 3.2 \boxed{0.712} \leftarrow \frac{0.712}{3.2}$$

2. Multiply the divisor by a power of 10 value (10, 100, 1,000) to make it a whole number

$$3.2 \cdot 10 = 32$$

3. Multiply the dividend by the same power of 10 value

$$0.712 \cdot 10 = 7.12$$

4. Apply the new values to the long division equation

5. Put a decimal above the divsion bracket exactly where it is located in the dividend

6. Begin the long division process

I. UNDERSCORE:

Underscore the digit of interest
This starts with the leftmost digit of the dividend

II. ASK:

Can 32 fit into 7?

III. RESPONSE:

No

IV. ZERO:

put 0 above the digit of interest

7. Continue the long division process

I. EXPAND UNDERSCORE:

Expand the digits of interest to the next digit to the right Ignore the decimal

71

II. ASK:

Can 32 fit into 71?

III. RESPONSE:

Yes

IV. HOW MANY TIMES?:

2

since $32 \cdot 2 = 64$

put 2 above the digit of interest

V. SUBTRACT:

71-64=7 (Remainder)

VI. DROP:

8. Continue the long division process

I. NEW UNDERSCORE:

The difference and newly dropped digit are the new digits of interest

72

II. ASK:

Can 32 fit into 72?

III. RESPONSE:

Yes

IV. HOW MANY TIMES?:

2

since $32 \cdot 2 = 64$

put 2 above the digit of interest

V. SUBTRACT:

72 - 64 = 8 (Remainder)

VI. DROP:

9. Continue the long division process

I. NEW UNDERSCORE:

The difference and newly dropped digit are the new digits of interest

80

II. ASK:

Can 32 fit into 80?

III. RESPONSE:

Yes

IV. HOW MANY TIMES?:

2

 $since 32 \cdot 2 = 64$

put 2 above the digit of interest

V. SUBTRACT:

80 - 64 = 16 (Remainder)

VI. DROP:

10. Finish the long division process

I. NEW UNDERSCORE:

The difference and newly dropped digit are the new digits of interest

<u>160</u>

II. ASK:

Can 32 fit into 160?

III. RESPONSE:

Yes

IV. HOW MANY TIMES?:

5

since $32 \cdot 5 = 160$

put 5 above the digit of interest

V. SUBTRACT:

160 - 160 = 0 (Remainder)

VI. FINISH:

The remainder is 0

There are no digits left to drop

The answer is 0.2225

Example:

Dividend

whole number larger value

Divisor

whole number smaller value

1. Convert to long division format

Standard Division Format

Long Division Format

Fraction Format

2. Put a decimal above the division bracket exactly where it is located in the dividend

3. Begin the long division process

I. UNDERSCORE:

Underscore the digit of interest This starts with the leftmost digit of the dividend

II. ASK: Can 70 fit into 7? III. RESPONSE: No

IV. 7FRO:

put 0 above the digit of interest

4. Continue the long division process

I. EXPAND UNDERSCORE:

Expand the digits of interest to the next digit to the right

<u>70</u>

II. ASK:

Can 70 fit into 70?

III. RESPONSE:

Yes

IV. HOW MANY TIMES?:

1

since $70 \cdot 1 = 70$

put 1 above the digit of interest

V. SUBTRACT:

70 - 70 = 0 (Remainder)

VI. DROP:

5. Continue the long division process

I. NEW UNDERSCORE:

The difference and newly dropped digit are the new digits of interest

<u>07</u>

II. ASK:

Can 70 fit into 7?

III. RESPONSE:

No

IV. ZERO:

put 0 above the digit of interest

V. DROP:

6. Finish the long division process

I. NEW UNDERSCORE:

The difference and newly dropped digit are the new digits of interest

070

II. ASK:

Can 70 fit into 70?

III. RESPONSE: Yes

IV. HOW MANY TIMES?:

1

since $70 \cdot 1 = 70$ put 1 above the digit of interest

V. SUBTRACT:

70 - 70 = 0 (Remainder)

VI. FINISH:

The remainder is 0
There are no digits left to drop
The answer is 10.1

Example:

Dividend

whole number smaller value

Divisor

whole number larger value

1. Convert to long division format

Standard Division Format

Long Division Format

Fraction Format

→ 96 60

2. Put a decimal above the division bracket exactly where it is located in the dividend

3. Begin the long division process

I. UNDERSCORE:

Underscore the digit of interest
This starts with the leftmost digit of the dividend

II. ASK:

Can 96 fit into 6?

III. RESPONSE:

No

IV. ZERO:

put 0 above the digit of interest

4. Continue the long division process

96 60.

I. EXPAND UNDERSCORE:

Expand the digits of interest to the next digit to the right

<u>60</u>

II. ASK:

Can 96 fit into 60?

III. RESPONSE:

No

IV. ZERO:

put 0 above the digit of interest

5. Continue the long division process

96 60.00 - 576 240 I. EXPAND UNDERSCORE:

Expand the digits of interest to the next digit to the right Ignore the decimal

<u>600</u>

II. ASK:

Can 96 fit into 600?

III. RESPONSE:

Yes

IV. HOW MANY TIMES?:

6

since $96 \cdot 6 = 576$ put 6 above the digit of interest

V. SUBTRACT:

600 - 576 = 24 (Remainder)

VI. DROP:

6. Continue the long division process

I. NEW UNDERSCORE:

The difference and newly dropped digit are the new digits of interest

240

II. ASK:

Can 96 fit into 240?

III. RESPONSE:

Yes

IV. HOW MANY TIMES?:

2

since $96 \cdot 2 = 192$ put 6 above the digit of interest

V. SUBTRACT:

240 - 192 = 48 (Remainder)

VI. DROP:

7. Finish the long division process

I. NEW UNDERSCORE:

The difference and newly dropped digit are the new digits of interest

480

II. ASK:

Can 96 fit into 480?

III. RESPONSE:

Yes

IV. HOW MANY TIMES?:

5

since $96 \cdot 5 = 480$ put 5 above the digit of interest

V. SUBTRACT:

480 - 480 = 0 (Remainder)

VI. FINISH:

The remainder is 0

There are no digits left to drop

The answer is 0.625

Example:

Dividend contains a decimal larger value

Divisor whole number smaller value

1. Convert to long division format

Standard Division Format

Long Division Format

Fraction Format $4.44 \div 4 = \longrightarrow 4 \boxed{4.44} \longrightarrow \frac{4.44}{4}$

2. Put a decimal above the division bracket exactly where it is located in the dividend

3. Begin the long division process

I. UNDERSCORE:

Underscore the digit of interest This starts with the leftmost digit of the dividend

4

II. ASK:

Can 4 fit into 4?

III. RESPONSE:

Yes

IV. HOW MANY TIMES?:

1

since $4 \cdot 1 = 4$

put 1 above the digit of interest

V. SUBTRACT:

4-4=0 (Remainder)

VI. DROP:

4. Continue the long division process

I. NEW UNDERSCORE:

The difference and newly dropped digit are the new digits of interest

04

II. ASK:

Can 4 fit into 4?

III. RESPONSE:

Yes

IV. HOW MANY TIMES?:

1

since $4 \cdot 1 = 4$ put 1 above the digit of interest

V. SUBTRACT:

4-4=0 (Remainder)

VI. DROP:

5. Finish the long division process

I. NEW UNDERSCORE:

The difference and newly dropped digit are the new digits of interest

04

II. ASK:

Can 4 fit into 4?

III. RESPONSE:

Yes

IV. HOW MANY TIMES?:

1

since $4 \cdot 1 = 4$

put 1 above the digit of interest

V. SUBTRACT:

4-4=0 (Remainder)

VI. FINISH:

The remainder is 0

There are no digits left to drop

The answer is 1.11

Example:

Dividend

whole number larger value

Divisor

contains a decimal smaller value

1. Convert to long division format

Standard Division Format

Long Division Format

Fraction Format

$$8 \div 0.32 = \longrightarrow 0.32 \boxed{8}$$

2. Multiply the divisor by a power of 10 value (10, 100, 1,000) to make it a whole number

$$0.32 \cdot 100 = 32$$

3. Multiply the dividend by the same power of 10 value

$$8 \cdot 100 = 800$$

4. Apply the new values to the long division equation

5. Put a decimal above the divsion bracket exactly where it is located in the dividend

6. Begin the long division process

I. UNDERSCORE: Underscore the digit of interest This starts with the leftmost digit of the dividend

IV. ZERO: put 0 above the digit of interest

7. Continue the long division process

I. EXPAND UNDERSCORE:

Expand the digits of interest to the next digit to the right Ignore the decimal

80

II. ASK:

Can 32 fit into 80?

III. RESPONSE:

Yes

IV. HOW MANY TIMES?:

2

since $32 \cdot 2 = 64$

put 2 above the digit of interest

V. SUBTRACT:

80 - 64 = 16 (Remainder)

VI. DROP:

8. Finish the long division process

I. NEW UNDERSCORE:

The difference and newly dropped digit are the new digits of interest

160

II. ASK:

Can 32 fit into 160?

III. RESPONSE:

Yes

IV. HOW MANY TIMES?:

5

since $32 \cdot 5 = 160$

put 5 above the digit of interest

V. SUBTRACT:

160 - 160 = 0 (Remainder)

VI. FINISH:

The remainder is 0

There are no digits left to drop

The answer is 25

Example:

Dividend zero

Divisor

any value (except zero)

5 0

The quotient is always 0

Example:

Dividend any value

Divisor zero

undefined

0 5

The quotient is undefined

Example:

Dividend

the same value

Divisor

the same value

7 **7**

The quotient is always 1

Example:

Dividend Divisor any value (except zero) one

1 9

The quotient is always the same as the dividend